岩棉与矿渣棉性能差异研究

宋世林

(信阳师范学院化工系,信阳 464000)

摘要 主要从岩棉和矿渣棉化学成份及酸度系数的不同,论述了岩棉与矿渣棉在耐水性、耐热性和耐腐蚀性等性能上的差异。 **关键词** 岩棉 矿渣棉 酸度系数 三元相图 耐水性 耐热性 耐腐蚀性

岩棉与矿渣棉同属矿物棉,它们之间在生产工艺、纤维形态、耐碱性、导热系数、不燃性等方面存在不少共同点。人们通常将岩棉和矿渣棉统称为矿棉,因此易将两者看成是同一种东西,甚至认为矿渣棉色泽洁白,比灰绿色的岩棉更为"纯净"些,这是一种误解。虽然它们都属矿物棉,但也还存在一些不容忽视的差别。形成这些差别的主要原因,是原料成份的不同。

1 岩棉与矿渣棉化学成份及酸度系数的比较

在我国,矿渣棉的主要原料一般为高炉渣或其 它冶金炉渣,岩棉的主要原料则为玄武岩或辉绿岩, 它们的化学成份差异较大(表 1)。

表 1 岩棉与矿渣棉主要原料化学成份(%)

原料名称	SiO ₂	Al ₂ O ₃	CaO	MgO	Fe ₂ O ₃	FeO	SiO ₂ + Al ₂ O ₃ + CaO + MgO	MK*
玄武岩	47.41	15.0	8. 02	6.89	3.99	7.36	77.32	4. 18
辉绿岩	49. 32	16.61	9.40	6.56	6.0	4. 65	81.89	4. 13
铸造生铁 高炉渣	40 ~ 41	8 ~ 17	36 ~ 42	6~8	_	0.65	90 ~ 95	0.95
炼钢生铁 高炉渣	38 ~ 40	6~12	38 ~ 43	5 ~ 12	_	0.4~0.8	90 ~ 95	0.95

*酸度系数 M K = (SiO₂ + Al₂O₃)/(CaO + M gO);岩石成份为我国原料平均值

由表 1 可见:高炉渣化学成份的特点是, SiO_2 + Al_2O_3 + CaO + MgO 含量高达 90 % ~ 95 %,而 Fe_2O_3 + FeO 含量小于 1;玄武岩和辉绿岩化学成份的特点是, SiO_2 + Al_2O_3 + CaO + MgO 含量为 77 % ~ 83 %,比高炉渣低 10 %左右,而 Fe_2O_3 + FeO 含量平均在 11 %左右,最高时可高达 17 %,是高炉渣中铁氧化物含量的十数倍。

鉴于以上两类原料的不同特点,以它们为原料分别生产出来的矿物纤维也具有不同的化学成份特点。岩棉的酸度系数 M K 一般大于 1.5,甚至可高达 2.0 以上;矿渣棉的 M K 一般只能保持在 1.2 左右,很难超过 1.3,这是因为若要进一步提高矿渣棉的酸度系数,就必须提高熔体中 SiO₂ 和 Al₂O₃ 的含量,使 CaO 和 MgO 含量相应地有所降低,在铁含量

较低的情况下,势必使熔体的粘度增大,以致难以保证矿渣棉纤维的品质。含氧化铁较低的熔体,当其MK=1.2左右时,在最佳成纤温度下有宽而稳定的粘度范围,这种情况下即使流股温度上下波动100 ,其纤维质量和成纤率将不受很大的影响。但是,随着酸度系数逐步提高,熔体稳定性变差,对温度变化的敏感性也随之提高,只要温度略有波动,其粘度将发生较大幅度的变化,甚至无法成纤,这就是矿渣棉酸度系数一般均在1.2左右、不可能象岩棉酸度系数达到1.5的原因所在。

2 岩棉与矿渣棉性能的差异

岩棉与矿渣棉化学成份及酸度系数的差别,导 致它们在性能上也有一定的差别。

表 2 岩棉与矿渣棉化学成份及结晶作用区域

ż	ŧ		主	要化学	成份/ 9	6		1417	pH 值	结晶作用 区域
5	jij	SiO ₂	Al ₂ O ₃	CaO	MgO	Fe ₂ O ₃	FeO	ΜK		
矿	1	35.42	13. 67	27. 83	11.81	6. 20	_	1.24	5.0	CS-C ₂ AS-C ₂ S
渣	2	39. 26	14. 65	36. 40	6.76	1.07	_	1. 25	5.3	CS-C ₂ AS-C ₂ S
棉	3	37.72	11.37	41.40	2.75	2.83	_	1.11	6.7	CS-C ₂ AS-C ₂ S
岩	4	41.80	15.40	16.70	10. 13	0.77	11.0	2. 13	0.8	CS-C ₂ AS-CAS ₂
	5	39. 60	15.44	18. 05	12.06	0. 63	8. 98	1.83	1.5	CS-C ₂ AS-CAS ₂
棉	6	41.80	14. 98	26.00	8.50	3.57	_	1.65	3.3	CS-C ₂ AS-CAS ₂

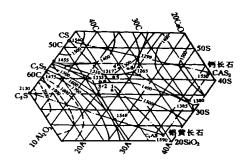


图 1 CaO-Al₂O₃-SiO₂ 三元相图中岩棉与矿渣棉落 点位置图

2.1 岩棉与矿渣棉耐水性的差别 尽管岩棉与矿渣棉都属于硅酸盐 CaO-Al₂O₃-SiO₂ 物系中的产物,

但由于它们化学成份上的差异(表 2),使它们的物 相组成点落在 CaO-Al₂O₃-SiO₂ 三元相图中不同的 结晶作用区域内(图 1)。

从表 2 及图 1 可见,岩棉组成点(图中 4、5、6 点)均落在硅灰石-铝方柱石-钙长石结晶作用区(即 CS-C2AS-CAS2区)内,其固相中必定留有这三种结 晶相,由于硅灰石、铝方柱石、钙长石均不具备水硬 特性,遇水后变化很小,使岩棉具有较好的耐水性。

矿渣棉组成的 1、2、3 点均落于硅灰石-铝方柱 石-硅酸二钙的结晶作用区(即 $CS-C_2AS-C_2S$ 区)内, 其中虽然铝方柱石、硅灰石不会与水发生反应,但硅 酸二钙在一定条件下能同水起反应,这与硅酸二钙 的基本结构有关。硅酸二钙(2CaO ·SiO₂)具有三种 不同的结晶构造,即、、型结晶。每一种构造在 一定的温度范围内是稳定的,但能随温度的变化进 行多晶转变: 在低温直至 675 稳定的构造是 -正硅酸钙(-2CaO ·SiO₂),它是结晶物质,不溶于水; 当加热至 675 时, -构造转化为 -构造,而且这 个转化作用伴随着体积的急剧变化(约增大 10 %), -构造从 675 到 1410~1420 处于稳定状态; 随着温度继续上升,-构造又转化为 -构造,该构造 直至其熔融温度 2130 均是稳定的(表 3)。在这三 种晶型中,除-构造外,-和-构造性能相似,均能 与水发生水化反应。矿渣棉中不希望存在这两种构 造,应尽量创造条件使 -、-构造向 -C2S 的方向转 化,以改善其耐水性。但是 -C2S 和 -C2S 只有从 高温缓慢冷却至 675 以下时,才能实现向 -C2S 的转变。在实际成纤过程中,熔体不是缓冷而是被 急骤冷却,其粘度随温度的急降而迅速增大,这时离 子运动受阻,不可能继续有规则地排列,抑制了晶体 的生长,硅与氧离子便连接成连续、不规则的网架, 在低温下保留了 -C2S 变体的形态,形成较多量的 玻璃态 - C, S, 这意味着它将在水溶液的作用下,形 成更多的水化硅酸盐和水化铝酸盐,使矿渣棉纤维 在潮湿环境中的稳定性下降。

岩棉中很少存在 2CaO ·SiO₂, 所以它的耐水性 比矿渣棉高得多。从表 2 中还可看到岩棉与矿渣棉 的 pH 值差别较大,岩棉的一般小于 4,属耐水性特 别稳定的矿物纤维;矿渣棉的一般大于5,甚至超过 6,其耐水性只能是中等稳定或不稳定的。由于两者 间存在这一差别,矿渣棉不宜在潮湿环境中使用,特 别在保冷工程中应慎用。在保冷工程中,热流方向 是从外部向内部流动的,与保温工程热流方向相反, 外界的潮气将随热流一起渗入保冷材料内部,并随 温度降低而结露凝结成水,如果在此处使用矿渣棉, 其纤维会逐渐水化而被破坏,降低了保冷层的使用

寿命,而使用岩棉就不存在这一弊端。

表 3 岩棉与矿渣棉主要矿物的性质

7 thm & 1 h	ハマギ	化	学成份	}/ %	密度	熔点或	水化
矿物名称	分子式	CaO	SiO ₂	Al ₂ O ₃	g/ cm ³	转化温度	反应
假硅灰石	-CaO ⋅SiO ₂	48. 2	51.8	_		熔点 1540	无
硅灰石	-CaO ⋅SiO ₂	48. 2	51.8	_	2. 915	转化点 1200	无
铝方柱石	2CaO Al ₂ O ₃ SiO ₂	40. 8	22.0	37.2	3.04	熔点 1590	无
钙长石	CaO :Al ₂ O ₂ ·2SiO ₂	20. 1	43.3	36.6	2. 765	熔点 1550	无
硅酸二钙	-2CaO ⋅SiO ₂	65.0	35.0	_	3. 27	熔点 2130	有
硅酸二钙	-2CaO ·SiO ₂	65.0	35.0	_	3. 28	转化点 1410 ~ 1420	有
硅酸二钙	-2CaO ⋅SiO ₂	65.0	35.0	_	2. 970	转化点 675	无

2.2 岩棉与矿渣棉耐热度的差别 如前所述,在矿 渣棉生产过程中,因熔体被急冷而使其中的硅酸二 钙以一构造的形态保留在纤维之中,并处于不稳定 状态之中。这样,矿渣棉用于保温工程之后,当其工 作温度超过 675 又逐渐冷却下来时,因矿渣棉保 温性能较好,在工作状态下冷却过程缓慢,促使 -2CaO·SiO 向 -2CaO·SiO2 转化,此时其密度由 3.28 降至 2.97,体积膨胀了 10%左右,使矿渣棉产 生粉化而解体。因此,矿渣棉的使用温度,不宜超过 -构造向 -构造转化的温度(675)。而岩棉没有 这一转化,使用温度可高达800以上,尽管岩棉主 要矿物组成 CS-C₂AS-CAS₂ 的共融点为 1265 ,其 软化温度仍高达 900~1000。

2.3 岩棉与矿渣棉耐腐蚀性的差别 高炉在冶炼 中主要作用之一是脱除生铁中的大部分硫,防止生 铁在使用过程中产生热脆现象。这些脱除的硫,以 硫化钙(CaS)的形态留在高炉渣之中。在生产矿渣 棉时,这部分 CaS 又随之进入矿渣棉中,其含量在 5%左右。

当矿渣棉在湿度大的环境中使用时,其中的 CaS 遇水会分解为 Ca(OH)2 和 H2S: CaS + 2H2O = Ca(OH)₂ + H₂S。这两种反应产物对矿渣棉的使 用均产生不良影响: Ca(OH)2 使水呈碱性,矿渣 棉中的 $-2CaO \cdot SiO_2$ 在碱性水溶液的激发之下,更 促使其水化反应的进行,使矿渣棉耐水性进一步降 低: H₂S 气体可溶解于水生成氢硫酸,在与金属接 触时将起腐蚀作用。

岩棉一般以玄武岩或辉绿岩为原料,除在熔炼 时由焦炭带入微量硫外,不存在更多的硫来源,因而 其对金属无腐蚀作用。

事实上,无论是岩棉或矿渣棉,在其使用过程中 不可避免地会与金属接触以及存在水气,因此,在选 材时这两种材料在耐腐蚀方面的差异不容忽视。

3 结语

岩棉与矿渣棉虽然存在很多相同之处,但也存 在一些明显的不同之处,因此不能 (下转第14页)

3.2 煅烧温度确定 为了确定煅烧温度,我们对磷石膏进行了差热分析,结果见图 1。

表 2 洗涤效果(%)

 磷石膏	可溶 P ₂ O ₅	可溶 F	有机物
未洗涤	0. 59	0.018	2. 96
洗涤后	0.01	0.002	0.02

注 : P_2O_5 的测定用文献 $^{[3]}$ 中的方法 , F 的测定用文献 $^{[4]}$ 中的方法 。

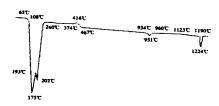


图 1 磷石膏差热曲线图

由图 1 可看出,二水石膏在 65 时开始脱去吸附水,在 108 左右开始脱去结晶水,在 175 左右有一个陡的吸热峰,这是二水石膏脱去 1.5 H₂O 的过程;而后有一个较短的相对稳定的过程,这个过程的存在对形成稳定的半水石膏有利。在 193 ~ 210 之间有一个次一级的吸热峰,这是半水石膏向

型无水石膏转变的过程,在 260 以后趋于稳定。在 374~467 之间,于 416 左右有一个放热峰,它表示这是 型无水石膏向 型无水石膏转变的过程。因此,本试验将半水石膏的生产温度,控制在170~185 左右。

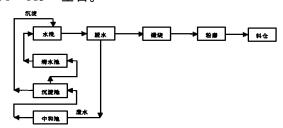


图 2 工艺简图

3.3 测定结果与讨论 由于试验较多,我们选择部分有代表性的结果,说明如下(表 3)。

从表 3 可看出,由淄博北威磷化工有限公司生产出的建筑石膏粉,符合国家标准 GB9776 的要求,可应用在建筑业上。

从照片上可以看出,A2的晶体发育比较完全,

纵横交错,晶体间搭接较多,呈团状,空隙较少;而 X_3 结构疏松,空隙较多,晶体间的搭接也较少。 所以,宏观上造成 A_2 的强度比 X_3 高一些。

表 3 试样的性能

序号	标稠/ %	初凝	终凝	2h 抗折/ MPa	2h 抗压/ MPa
A_2	68	7 10	12 20	2. 18	3.50
A_7	70	7 25	13 05	2.03	3.41
X_3	70	8 15	14 10	1.83	3. 20

注:A₂、A₇ 为水洗石膏,X₃ 为普通建筑石膏。



图 3 扫描电镜图像

4 结论

- 4. 磷石膏中的可溶杂质及有机物对石膏制品 影响很大,需除去。
- 2. 以水固比为 1,经 4次洗涤就可达到良好效果,悬浮物和沉淀物的 pH 值都达到 6.0。
- 3. 煅烧温度不易控制,温度范围以170~185 为宜,比天然石膏的145~170 有所缩短,超出190 将造成过烧石膏。
- 4. 磷石膏经水洗后不用外加剂,完全可生产出符合国家标准要求的建筑石膏粉。

参考文献

- 1 宋廷寿等.用磷石膏生产建筑石膏的研究.新型建筑材料,2000 (4):26
- 2 郝挺宇.磷石膏中的杂质对磷石膏胶结材料制备工艺和性能的 影响.重庆建筑大学内部资料,1995
- 3 南京化学工业公司磷肥厂编.萃取磷酸和磷酸铵的生产.北京: 燃化工业出版社,1974
- 4 国家标准局.磷精矿和磷矿石中氟含量的分析方法.中华人民 共和国国家标准 CB1872-80,1980

收稿日期:2000-09-02

(上接第 12 页) 完全混为一谈。在选用矿物棉作为隔热材料时,务必根据隔热工程的具体情况,结合岩棉和矿渣棉各自的特点加以正确的选择,特别对于两者在耐水性、耐热性和耐腐蚀性这三方面的特定条件下的使用,更应予以重视。

参考文献

1 诸培南. 工艺岩石学基础. 上海:科学出版社,1959

- 2 南京化工学院等合编.硅酸盐物理化学.北京:中国工业出版 社,1961
- 3 曾大斧等.工业设备与管道的保温.北京:水利电力出版社, 1982
- 4 东北工学院. 高炉炼铁. 北京:冶金出版社,1978

收稿日期:2000-05-22